Sains Malaysiana 53(5)(2024): 1055-1065

http://doi.org/10.17576/jsm-2024-5305-07

 

Carrier Based Liquid Bioformulation of Salt-Tolerant PGPR Bacillus species for Prolonged Survivability

(Bioformulasi Cecair Berasaskan Pembawa PGPR Spesies Bacillus Toleransi Garam untuk Kemandirian Berpanjangan)

 

SAYMA SERINE CHOMPA1, ALI TAN KEE ZUAN1,*, ADIBAH MOHD AMIN1, TAN GEOK HUN1, AMIR HAMZAH AHMAD GHAZALI2, BURAQ MUSA SADEQ1, AMAILY AKTER1, MD EKHLASUR RAHMAN1,3, HARUN OR RASHID4 & ABBA NABAYI1,5

 

1Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia

3Divisional Laboratory, Krishi Khamar Sarak, Farmgate, Soil Resource Development Institute, Dhaka-1215, Bangladesh

4Department of Modern Language & Communications, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

5Department of Soil Science, Faculty of Agriculture, Federal University Dutse (FUD), Nigeria. PMB 7156, Ibrahim Aliyu bye-pass Jigawa state, Nigeria

 

Received: 10 April 2023/Accepted: 27 March 2024

 

Abstract

Salinity has emerged as one of the agricultural plants' most severe environmental stresses. Recently, a plant growth-promoting rhizobacteria (PGPR) is being touted as a means of solving yield and environmental issues worldwide. However, multi-strain salt-tolerant rhizobacteria have a short shelf life due to their structural and cellular components, therefore, they need to be supplemented with a liquid carrier material to serve as a shelter and energy source for the bacteria for longer survival. The present study has been undertaken to develop a liquid biofertilizer formulation from multi-strain salt-tolerant PGPR – UPMR, UPMRE6, and a mixed strain of UPMRB9 and UPMRE6 using an optimum amount of cell protectants, namely glycerol (5 mM), trehalose (10 mM), and polyvinyl pyrrolidone (PVP) at 1%. The shelf-life was assessed through measurements of optical density and bacterial biomass to determine the bacterial population and growth trend at monthly intervals. After three months of incubation, the optical density was the highest in the mixed strain treatment supplemented with trehalose with 1.3% and 2.2% increase relative to the UPMRE6 and UPMRB9, respectively, using the same cell protectants. Similarly, bacterial biomass production was the highest in the mixed strains treatment amended with trehalose (0.025 g/mL), with 13.64% and 38.89% increment followed by UPMRE6 and UPMRB9, respectively. Irrespective of the type of protectants used and PGPR type, the optical density and bacterial biomass generally decreased long incubation period. The results demonstrated that the use of 10 mM trehalose has the potential to extend the bacterial shelf life with the slightest cell loss.

 

Keywords: Additives; bioformulation; plant growth-promoting rhizobacteria; salinity; shelf-life

 

Abstrak

Kemasinan telah menjadi salah satu tekanan alam sekitar yang paling teruk bagi tanaman pertanian. Sejak kebelakangan ini, rhizobakteria penggalak pertumbuhan tumbuhan (PGPR) digembar-gemburkan sebagai penyelesaian kepada isu hasil dan alam sekitar di seluruh dunia. Walau bagaimanapun, rhizobakteria tahan masin berbilang strain mempunyai jangka hayat singkat disebabkan struktur dan komponen selnya, oleh itu, ia memerlukan tambahan bahan pembawa cecair yang berfungsi sebagai perlindungan dan sumber tenaga demi kelangsungan hidup yang lebih lama. Penyelidikan ini dijalankan untuk membangunkan formulasi baja bio cecair daripada PGPR tahan masin pelbagai strain - UPMR, UPMRE6 dan campuran UPMRB9 dan UPMRE6 menggunakan jumlah optimum pelindung sel, iaitu gliserol (5 mM), trehalosa (10 mM) dan polivinil pirolidon (PVP) pada kadar 1%. Jangka hayat dinilai melalui pengukuran ketumpatan optik dan biojisim bakteria untuk menentukan populasi bakteria dan trend pertumbuhan pada sela bulan. Selepas tiga bulan inkubasi, ketumpatan optik adalah yang tertinggi dalam rawatan strain campuran ditambah dengan trehalosa dengan peningkatan masing-masing sebanyak 1.3% dan 2.2% berbanding UPMRE6 dan UPMRB9 menggunakan pelindung sel yang sama. Begitu juga pengeluaran biojisim bakteria adalah yang tertinggi dalam rawatan strain campuran yang dipinda dengan trehalosa (0.025 g/mL) dengan kenaikan masing-masing 13.64% dan 38.89% diikuti oleh UPMRE6 dan UPMRB9. Tanpa mengira jenis pelindung yang digunakan dan jenis PGPR, ketumpatan optik dan biojisim bakteria secara amnya mengurangkan tempoh inkubasi yang panjang. Keputusan menunjukkan bahawa penggunaan trehalosa 10 mM berpotensi untuk memanjangkan jangka hayat bakteria dengan kehilangan sel yang sedikit.

 

Kata kunci: Aditif; formulasi biologi; jangka hayat; kemasinan; rhizobakteria penggalak pertumbuhan tumbuhan

 

REFERENCES

Abdel-Gayed, M.A., Abo-Zaid, G.A., Matar, S.M. & Hafez, E.E. 2019. Fermentation, formulation, and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. Journal of Integrative Agriculture 18(9): 2080-2092. https://doi:10.1016/S2095-3119(19)62578-5

Aggani, S.L. 2013. Development of bio-fertilizers and its future perspective. Scholars Academic Journal of Pharmacy 2(4): 327-332.

Ali-Tan, K.Z., Radziah, O., Halimi, M.S., Rahim, K.B.A., Abdullah, M.Z. & Shamsuddin, Z.H. 2017. Growth and yield responses of rice cv. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-N rates. Bangladesh Journal of Botany 46(1): 481-488.

Arora, M., Saxena, P., Abdin, M.Z. & Varma, A. 2020a. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 80: 61-73. https://doi.org/10.1007/s13199-019-00656-w

Arora, N.K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., Verma, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, C. 2020b. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003

Arriel-Elias, M.T., Oliveira, M.I., Silva-Lobo, V.L., Filippi, M.C.C., Babana, A.H., Conceição, E.C. & Cortes, M.D.C. 2018. Shelf-life enhancement of plant growth promoting rhizobacteria using a simple formulation screening method. African Journal of Microbiology Research 12(5): 115-126. https://doi.org/10.5897/AJMR2017.8787

Bhakyaraj, R., Yogananth, N., Palanivel, S. & Parvathi, S. 2022. Agrobacterium mediated gene transfer in medicinal plants for enhanced production of secondary metabolites. In Synthetic Microbial Research- Challenge and Prospects, 1st ed., edited by Bhakyaraj, R., Arunkumar, D. & Anitha, A. India: Darshan Publishers. pp. 1-11. https://doi.org/10.22192/smrcp

Brahmaprakash, G.P., Sahu, P.K., Lavanya, G., Gupta, A., Sneha, S.N. & Vijaykumar, G. 2020. Role of additives in improving efficiency of bioformulation for plant growth and development. In Frontiers in Soil and Environmental Microbiology, edited by Nayak, S.K. & Mishra, B.B. Boca Raton: CRC Press. pp. 1-10. http://10.1201/9780429485794-1

Bratbak, G. & Dundas, I. 1984. Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology 48(4): 755-757. https://doi:10.1128/aem.48.4.755-757.1984

Buraq, M.S., Ali, T.K.Z., Susilawati, K., Wong, M.Y., Nur, M.I.O., Jawadyn, T.A., Sayma, S.C., Amaily, A. & Md, E.R. 2023. Humic acid-amended formulation improves shelf-life of plant growth-promoting rhizobacteria (PGPR) under laboratory conditions. Pertanika Journal of Science & Technology 31(3): 1137-1155. https://doi.org/10.47836/pjst.31.3.01

Chakraborty, A.P. 2020. Carrier based bioformulations of PGPR- characteristics, shelf life and application in improving health status of crop plants - A mini review. International Journal of Research and Review 7: 88-98.

Chandra, D., Pallavi, Barh, A. & Sharma, I.P. 2018. Plant growth promoting bacteria: A gateway to sustainable agriculture. In Microbial Biotechnology in Environmental Monitoring and Cleanup, edited by Bhatt, P. & Sharma, A. IGI Global. pp. 318-338. DOI: https://doi.org/10.4018/978-1-5225-3126-5.ch020

Chang, P., Gerhardt, K.E., Huang, X.D., Yu, X-M., Glick, B.R., Gerwing, P.D. & Greenberg, B.M. 2014. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: Implications for phytoremediation of saline soils. International Journal of Phytoremediation 16: 1133-1147. https://doi.org/10.1080/15226514.2013.821447

Chatsuda, S., Nitchakarn, K. & Onruthai, P. 2021. Biodegradation of crude oil by immobilized Exiguobacterium sp. AO‑11 and shelf-life evaluation. Scientific Reports 11: 12990. https://doi.org/10.1038/s41598-021-92122-1

Fasusi, O.A., Cruz, C. & Babalola, O.O. 2021. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11: 163. https://doi.org/10.3390/agriculture11020163

Gokul, K.G., Meenakumari, K.S., Nysanth, N.S. & Subha, P. 2019. An optimized standard liquid carrier formulation for extended shelf-life of plant growth promoting bacteria. Rhizosphere 11: 100160. https://doi.org/10.1016/j.rhisph.2019.100160

Ijaz, M., Ali, Q., Ashraf, S., Kamran, M. & Rehman, A. 2019. Development of future bio-formulations for sustainable agriculture. In Microbiome in Plant Health and Disease, edited by Kumar, V., Prasad, R., Kumar, M. & Choudhary, D. Singapore: Springer. pp. 421-446. https://doi:10.1007/978-981-13-8495-0_19

Kapadia, C., Sayyed, R.Z., El Enshasy, H.A., Vaidya, H., Sharma, D., Patel, N. & Zuan, A.T.K. 2021. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plant and soil nutrient enrichment. Sustainability 13(15): 8369. https://doi.org/10.3390/su13158369

Kumar, A., Singh, S., Mukherjee, A., Rastogi, R.P. & Verma, J.P. 2021. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research 242: 126616. https://doi.org/10.1016/j.micres.2020.126616

Kumaresan, G. & Reetha, D. 2011. Survival of Azospirillum brasilense in liquid formulation amended with different chemical additives. Journal of Phytology 3(10): 48-51. http://journal-phytology.com/

Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H. & Chen, W. 2011. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology 92: 609-616. https://doi.org/10.1007/s00253-011-3269-4

Lipczynska-Kochany, E. 2018. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202: 420-437. https://doi.org/10.1016/j.chemosphere.2018.03.104

Mahalakshmi, S., Vijayapriya, M. & Pandeeswari, N. 2019. Studies on developing PGPR consortium with improved shelf life. Journal of Pharmacognosy Phytochemistry 8(2S): 545-548. https://www.phytojournal.com/archives/2019/vol8issue2S/PartN/SP-8-2-165-604.pdf

Maheshwari, D.K., Dubey, R.C., Agarwal, M., Dheeman, S., Aeron, A. & Bajpai, V.K. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRPI and Bacillus licheniformis KRBI. Ecological Engineering 81: 272-277.

Mishra, J., Fatima, T. & Arora, N.K. 2018. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Plant Microbiome: Stress Response, edited by Egamberdieva, D. & Ahmad, P. Microorganisms for Sustainability, vol. 5. Singapore: Springer. pp. 127-163. https://doi.org/10.1007/978-981-10-5514-0_6

Muangchinda, C., Srisuwankarn, P., Boubpha, S., Chavanich, S. & Pinyakong, O. 2020. The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment microcosms, and the development of a liquid ready-to-use inoculum. Chemosphere 250: 126303. https://doi.org/10.1016/j.chemo sphere.2020.126303

Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Khan, A. & Al-Harrasi, A. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research 209: 21-32. https://doi.org/10.1016/j.micres.2018.02.003

Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33: 197. https://doi.org/10.1007/s11274-017-2364-9

Palai, J.B., Malik, G.C., Maitra, S. & Banerjee, M. 2021. Role of Rhizobium on growth and development of groundnut: A review. International Journal Agriculture Environment and Biotechnology 14(1): 63-73. https://doi.org/10.30954/0974-1712.01.2021.7

Praveen Biradar, B.J. & Santhosh, G.P. 2018. Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. International Journal of Pure & Applied Bioscience 6(4): 116-122. http://dx.doi.org/10.18782/2320-7051.6821

Priour, S., Welman, A., Singh, H. & Ellis, A. 2021. Impact of protectant uptake on the shelf-life of dried Lactic aseibacillus rhamnosus. LWT - Food Science and Technology 153: 112394. https://doi.org/10.1016/j.lwt.2021.112394

Riddhi, P. & Vinod, K.N. 2021. Improved production of acrylamidase from Bacillus tequilensis through response surface methodology. Biomass Conversion and Biorefinery 13: 10085-10095. https://doi.org/10.1007/s13399-021-01874-3

Sahu, P.K. & Brahmaprakash, G.P. 2021. Formulations of biofertilizers - Approaches and advances. In Microbial Inoculants in Sustainable Agricultural Productivity, edited by Singh, D.P., Singh, H.B. & Prabha, R. New Delhi: Springer. pp. 179-198. http://link.springer.com/10.1007/978-81-322-2644-4

Schoebitz, M., López, M. & Roldán, A. 2013. Bioencapsulation of microbial inoculants for better soil–plant fertilization: A review. Agronomy for Sustainable Development 33(4): 751-765. https://doi:10.1007/s13593-013-0142-140

Shultana, R., Kee-Zuan, A.T., Yusop, M.R., Saud, H.M. & El-Shehawi, A.M. 2021. Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS ONE 16(12): e0260869. https://doi.org/10.1371/journal.pone.0260869

Shultana, R., Kee Zuan, A.T., Yusop, M.R. & Saud, H.M. 2020. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS ONE 15(9): e0238537. https://doi.org/10.1371/journal.pone.0238537

Stamenkovic, S., Beskoski, V., Karabegovic, I., Lazic, M. & Nikolic, N. 2018. Microbial fertilizers: A comprehensive review on current findings and future perspectives. Spanish Journal of Agricultural Research 16: e09R01. https://doi:10.5424/sjar/2018161-2012117

Takate, B.D. & Gaykar, B.M. 2021. Effect of different concentrations of glycerol on survival of Azotobacter chroococcum local strains isolated from wild grasses. Asian Journal of Applied Science and Technology (AJAST) 5(4): 16-23. http://doi.org/10.38177/ajast.2021.5402

Tamer, E., Azza, G. & Mohamed, A.A.R. 2020. Developing liquid rhizobium inoculants with enhanced long‑term survival, storage stability, and plant growth promotion using ectoine additive. Current Microbiology 78: 282-291. https://doi.org/10.1007/s00284-020-02265-z

Tang, A., Haruna, A.O. & Majid, N.M.A. 2020. Potential PGPR properties of cellulolytic, nitrogen-fixing, and phosphate-solubilizing bacteria of a rehabilitated tropical forest soil. Microorganisms 8(3): 442. https://doi.org/10.3390/microorganisms 8030442

Tapia, M.S., Alzamora, S.M. & Chirife, J. 2020. Effects of water activity (aw) on microbial stability: As a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications, edited by Barbosa-Canovas, G.V., Fontana Jr., A.J., Schmidt, S.J. & Labuza, T.P. Wiley. pp. 323-355. http://dx.doi.org/10.1002/9780470376454.ch10

Tikhonov, V.V., Yakushev, A.V., Zavgorodnyaya, Y.A., Byzov, B.A. & Demin, V.V. 2010. Effects of humic acids on the growth of bacteria. Eurasian Soil Science 43(3): 305-313. https://doi.org/10.1134/S1064229310030087

Timmis, K. & Ramos, J.L. 2021. The soil crisis: The need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology 14(3): 769-797. https://doi.org/10.1111/1751-7915.13771

Vanaporn, M. & Titball, R.W. 2020. Trehalose and bacterial virulence. Virulence 11(1): 1192-1202. https://doi.org/10.1080/21505594.2020

Vassilev, N., Eichler-Löbermann, B., Flor-Peregrin, E., Martos, V., Reyes, A. & Vassileva, M. 2017. Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 7: 106.  https://doi.org/10.1186/s13568-017-0408-z

Zhang, J., Cook, J., Nearing, J.T., Zhang, J., Raudonis, R., Glick, B.R., Langille, M.G.I. & Cheng, Z. 2021. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research 245: 126690. DOI: https://doi.org/10.1016/j.micres.2020.126690

Zorb, C., Geilfus, C.M. & Dietz, K.J. 2019. Salinity and crop yield. Plant Biology 21: 31-38. https://doi.org/10.1111/plb.12884

 

*Corresponding author; email: tkz@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous