Sains Malaysiana 53(5)(2024): 1055-1065
http://doi.org/10.17576/jsm-2024-5305-07
Carrier Based Liquid Bioformulation of Salt-Tolerant PGPR Bacillus species for Prolonged Survivability
(Bioformulasi Cecair Berasaskan Pembawa PGPR Spesies Bacillus Toleransi Garam untuk Kemandirian Berpanjangan)
SAYMA SERINE CHOMPA1, ALI TAN KEE ZUAN1,*, ADIBAH MOHD AMIN1, TAN GEOK HUN1,
AMIR HAMZAH AHMAD GHAZALI2, BURAQ MUSA SADEQ1, AMAILY
AKTER1, MD EKHLASUR RAHMAN1,3, HARUN OR RASHID4 & ABBA NABAYI1,5
2School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
3Divisional Laboratory, Krishi Khamar Sarak, Farmgate, Soil Resource Development Institute,
Dhaka-1215, Bangladesh
4Department of Modern Language &
Communications, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
5Department of Soil Science, Faculty
of Agriculture, Federal University Dutse (FUD),
Nigeria. PMB 7156, Ibrahim Aliyu bye-pass Jigawa state, Nigeria
Received:
10 April 2023/Accepted: 27 March 2024
Abstract
Salinity has emerged as one of the
agricultural plants' most severe environmental stresses. Recently, a plant
growth-promoting rhizobacteria (PGPR) is being touted
as a means of solving yield and environmental issues worldwide. However,
multi-strain salt-tolerant rhizobacteria have a short
shelf life due to their structural and cellular components, therefore, they
need to be supplemented with a liquid carrier material to serve as a shelter
and energy source for the bacteria for longer survival. The present study has
been undertaken to develop a liquid biofertilizer formulation from multi-strain salt-tolerant PGPR – UPMR, UPMRE6, and a mixed
strain of UPMRB9 and UPMRE6 using an optimum amount of cell protectants, namely
glycerol (5 mM), trehalose (10 mM), and polyvinyl pyrrolidone (PVP) at 1%. The shelf-life was assessed through measurements of optical
density and bacterial biomass to determine the bacterial population and growth
trend at monthly intervals. After three months of incubation, the optical
density was the highest in the mixed strain treatment supplemented with trehalose with 1.3% and 2.2% increase relative to the
UPMRE6 and UPMRB9, respectively, using the same cell protectants. Similarly,
bacterial biomass production was the highest in the mixed strains treatment
amended with trehalose (0.025 g/mL), with 13.64% and
38.89% increment followed by UPMRE6 and UPMRB9, respectively. Irrespective of
the type of protectants used and PGPR type, the optical density and bacterial
biomass generally decreased long incubation period. The results demonstrated
that the use of 10 mM trehalose has the potential to extend the bacterial shelf life with the slightest cell
loss.
Keywords: Additives; bioformulation;
plant growth-promoting rhizobacteria; salinity; shelf-life
Abstrak
Kemasinan telah menjadi salah satu tekanan alam sekitar yang paling teruk bagi tanaman pertanian. Sejak kebelakangan ini, rhizobakteria penggalak pertumbuhan tumbuhan (PGPR) digembar-gemburkan sebagai penyelesaian kepada isu hasil dan alam sekitar di seluruh dunia. Walau bagaimanapun, rhizobakteria tahan masin berbilang strain mempunyai jangka hayat singkat disebabkan struktur dan komponen selnya, oleh itu, ia memerlukan tambahan bahan pembawa cecair yang berfungsi sebagai perlindungan dan sumber tenaga demi kelangsungan hidup yang lebih lama. Penyelidikan ini dijalankan untuk membangunkan formulasi baja bio cecair daripada PGPR tahan masin pelbagai strain - UPMR, UPMRE6 dan campuran UPMRB9 dan UPMRE6 menggunakan jumlah optimum pelindung sel, iaitu gliserol (5 mM), trehalosa (10 mM) dan polivinil pirolidon (PVP) pada kadar 1%. Jangka hayat dinilai melalui pengukuran ketumpatan optik dan biojisim bakteria untuk menentukan populasi bakteria dan trend pertumbuhan pada sela bulan. Selepas tiga bulan inkubasi, ketumpatan optik adalah yang tertinggi dalam rawatan strain campuran ditambah dengan trehalosa dengan peningkatan masing-masing sebanyak 1.3% dan 2.2% berbanding UPMRE6 dan UPMRB9 menggunakan pelindung sel yang sama. Begitu juga pengeluaran biojisim bakteria adalah yang tertinggi dalam rawatan strain campuran yang dipinda dengan trehalosa (0.025 g/mL) dengan kenaikan masing-masing 13.64% dan 38.89% diikuti oleh UPMRE6 dan UPMRB9. Tanpa mengira jenis pelindung yang digunakan dan jenis PGPR, ketumpatan optik dan biojisim bakteria secara amnya mengurangkan tempoh inkubasi yang panjang. Keputusan menunjukkan bahawa penggunaan trehalosa 10 mM berpotensi untuk memanjangkan jangka hayat bakteria dengan kehilangan sel yang sedikit.
Kata kunci: Aditif; formulasi biologi; jangka hayat; kemasinan; rhizobakteria penggalak pertumbuhan tumbuhan
REFERENCES
Abdel-Gayed,
M.A., Abo-Zaid, G.A., Matar, S.M. & Hafez, E.E.
2019. Fermentation, formulation, and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of
peanut soil-borne diseases. Journal of Integrative Agriculture 18(9):
2080-2092. https://doi:10.1016/S2095-3119(19)62578-5
Aggani, S.L. 2013. Development of
bio-fertilizers and its future perspective. Scholars Academic Journal of
Pharmacy 2(4): 327-332.
Ali-Tan, K.Z., Radziah, O., Halimi, M.S., Rahim,
K.B.A., Abdullah, M.Z. & Shamsuddin, Z.H. 2017.
Growth and yield responses of rice cv. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-N rates. Bangladesh
Journal of Botany 46(1): 481-488.
Arora, M., Saxena,
P., Abdin, M.Z. & Varma, A. 2020a. Interaction
between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 80: 61-73. https://doi.org/10.1007/s13199-019-00656-w
Arora,
N.K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., Verma, M.,
Bhattacharya, A., Verma, P., Mishra, P. & Bharti, C. 2020b. Halo-tolerant
plant growth promoting rhizobacteria for improving
productivity and remediation of saline soils. Journal of Advanced Research 26:
69-82. https://doi.org/10.1016/j.jare.2020.07.003
Arriel-Elias,
M.T., Oliveira, M.I., Silva-Lobo, V.L., Filippi,
M.C.C., Babana, A.H., Conceição,
E.C. & Cortes, M.D.C. 2018. Shelf-life enhancement of plant growth
promoting rhizobacteria using a simple formulation
screening method. African Journal of Microbiology Research 12(5):
115-126. https://doi.org/10.5897/AJMR2017.8787
Bhakyaraj,
R., Yogananth, N., Palanivel,
S. & Parvathi, S. 2022. Agrobacterium mediated gene transfer in
medicinal plants for enhanced production of secondary metabolites. In Synthetic
Microbial Research- Challenge and Prospects, 1st ed., edited by Bhakyaraj, R., Arunkumar, D.
& Anitha, A. India: Darshan Publishers. pp. 1-11. https://doi.org/10.22192/smrcp
Brahmaprakash, G.P., Sahu,
P.K., Lavanya, G., Gupta, A., Sneha,
S.N. & Vijaykumar, G. 2020. Role of additives in
improving efficiency of bioformulation for plant
growth and development. In Frontiers in Soil and Environmental Microbiology, edited by Nayak, S.K. & Mishra, B.B.
Boca Raton: CRC Press. pp. 1-10. http://10.1201/9780429485794-1
Bratbak, G. & Dundas, I. 1984.
Bacterial dry matter content and biomass estimations. Applied and
Environmental Microbiology 48(4): 755-757. https://doi:10.1128/aem.48.4.755-757.1984
Buraq, M.S., Ali, T.K.Z., Susilawati, K., Wong, M.Y., Nur,
M.I.O., Jawadyn, T.A., Sayma,
S.C., Amaily, A. & Md,
E.R. 2023. Humic acid-amended formulation improves
shelf-life of plant growth-promoting rhizobacteria (PGPR) under laboratory conditions. Pertanika Journal of Science & Technology 31(3): 1137-1155. https://doi.org/10.47836/pjst.31.3.01
Chakraborty, A.P. 2020.
Carrier based bioformulations of PGPR-
characteristics, shelf life and application in improving health status of crop
plants - A mini review. International Journal of Research and Review 7:
88-98.
Chandra, D., Pallavi, Barh, A. & Sharma,
I.P. 2018. Plant growth promoting bacteria: A gateway to sustainable
agriculture. In Microbial Biotechnology in Environmental Monitoring and
Cleanup, edited by Bhatt, P. & Sharma, A. IGI Global. pp. 318-338. DOI: https://doi.org/10.4018/978-1-5225-3126-5.ch020
Chang, P., Gerhardt, K.E.,
Huang, X.D., Yu, X-M., Glick, B.R., Gerwing, P.D.
& Greenberg, B.M. 2014. Plant growth-promoting bacteria facilitate the
growth of barley and oats in salt-impacted soil: Implications for
phytoremediation of saline soils. International Journal of Phytoremediation 16:
1133-1147. https://doi.org/10.1080/15226514.2013.821447
Chatsuda, S., Nitchakarn,
K. & Onruthai, P. 2021. Biodegradation of crude
oil by immobilized Exiguobacterium sp.
AO‑11 and shelf-life evaluation. Scientific Reports 11: 12990. https://doi.org/10.1038/s41598-021-92122-1
Fasusi, O.A., Cruz, C. & Babalola, O.O. 2021. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11: 163. https://doi.org/10.3390/agriculture11020163
Gokul, K.G., Meenakumari,
K.S., Nysanth, N.S. & Subha,
P. 2019. An optimized standard liquid carrier formulation for extended
shelf-life of plant growth promoting bacteria. Rhizosphere 11: 100160.
https://doi.org/10.1016/j.rhisph.2019.100160
Ijaz, M., Ali, Q., Ashraf, S.,
Kamran, M. & Rehman, A. 2019. Development of
future bio-formulations for sustainable agriculture. In Microbiome in Plant
Health and Disease, edited by Kumar, V., Prasad, R., Kumar, M. & Choudhary, D. Singapore:
Springer. pp. 421-446. https://doi:10.1007/978-981-13-8495-0_19
Kapadia, C., Sayyed, R.Z., El Enshasy, H.A.,
Vaidya, H., Sharma, D., Patel, N. & Zuan, A.T.K.
2021. Halotolerant microbial consortia for sustainable mitigation of salinity
stress, growth promotion, and mineral uptake in tomato plant and soil nutrient
enrichment. Sustainability 13(15): 8369. https://doi.org/10.3390/su13158369
Kumar, A., Singh, S.,
Mukherjee, A., Rastogi, R.P. & Verma, J.P. 2021. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth
attributes of rice and improve soil health under salinity stress. Microbiological
Research 242: 126616. https://doi.org/10.1016/j.micres.2020.126616
Kumaresan, G. & Reetha, D. 2011. Survival of Azospirillum brasilense in liquid formulation amended with
different chemical additives. Journal of Phytology 3(10): 48-51. http://journal-phytology.com/
Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H. &
Chen, W. 2011. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and
Biotechnology 92: 609-616. https://doi.org/10.1007/s00253-011-3269-4
Lipczynska-Kochany, E.
2018. Humic substances, their microbial interactions
and effects on biological transformations of organic pollutants in water and
soil: A review. Chemosphere 202: 420-437.
https://doi.org/10.1016/j.chemosphere.2018.03.104
Mahalakshmi, S., Vijayapriya,
M. & Pandeeswari, N. 2019. Studies on developing
PGPR consortium with improved shelf life. Journal of Pharmacognosy Phytochemistry 8(2S): 545-548. https://www.phytojournal.com/archives/2019/vol8issue2S/PartN/SP-8-2-165-604.pdf
Maheshwari, D.K., Dubey, R.C., Agarwal,
M., Dheeman, S., Aeron, A. & Bajpai,
V.K. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRPI and Bacillus licheniformis KRBI. Ecological Engineering 81: 272-277.
Mishra, J., Fatima, T. &
Arora, N.K. 2018. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Plant
Microbiome: Stress Response, edited by Egamberdieva,
D. & Ahmad, P. Microorganisms for Sustainability, vol. 5. Singapore: Springer. pp. 127-163. https://doi.org/10.1007/978-981-10-5514-0_6
Muangchinda, C., Srisuwankarn,
P., Boubpha, S., Chavanich,
S. & Pinyakong, O. 2020. The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment
microcosms, and the development of a liquid ready-to-use inoculum. Chemosphere 250: 126303. https://doi.org/10.1016/j.chemo
sphere.2020.126303
Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan,
A.L., Khan, A. & Al-Harrasi, A. 2018. Plant
growth promoting bacteria as an alternative strategy for salt tolerance in
plants: A review. Microbiological Research 209: 21-32. https://doi.org/10.1016/j.micres.2018.02.003
Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. 2017. Mechanisms of action of plant growth
promoting bacteria. World Journal of Microbiology and Biotechnology 33:
197. https://doi.org/10.1007/s11274-017-2364-9
Palai, J.B., Malik, G.C., Maitra, S. & Banerjee, M.
2021. Role of Rhizobium on growth and development of
groundnut: A review. International Journal Agriculture Environment and
Biotechnology 14(1): 63-73. https://doi.org/10.30954/0974-1712.01.2021.7
Praveen Biradar,
B.J. & Santhosh, G.P. 2018. Cell protectants, adjuvants, surfactant and
preservative and their role in increasing the shelf life of liquid inoculant
formulations of Pseudomonas fluorescens. International
Journal of Pure & Applied Bioscience 6(4): 116-122. http://dx.doi.org/10.18782/2320-7051.6821
Priour, S., Welman,
A., Singh, H. & Ellis, A. 2021. Impact of protectant uptake on the
shelf-life of dried Lactic aseibacillus rhamnosus. LWT - Food Science and Technology 153: 112394. https://doi.org/10.1016/j.lwt.2021.112394
Riddhi, P. & Vinod, K.N. 2021. Improved production of acrylamidase from Bacillus tequilensis through response
surface methodology. Biomass Conversion and Biorefinery 13: 10085-10095. https://doi.org/10.1007/s13399-021-01874-3
Sahu, P.K. & Brahmaprakash, G.P. 2021. Formulations of biofertilizers - Approaches and advances. In Microbial
Inoculants in Sustainable Agricultural Productivity, edited by Singh, D.P.,
Singh, H.B. & Prabha, R. New Delhi:
Springer. pp. 179-198. http://link.springer.com/10.1007/978-81-322-2644-4
Schoebitz, M., López,
M. & Roldán, A. 2013. Bioencapsulation of microbial inoculants for better soil–plant fertilization: A review. Agronomy
for Sustainable Development 33(4): 751-765. https://doi:10.1007/s13593-013-0142-140
Shultana, R., Kee-Zuan,
A.T., Yusop, M.R., Saud, H.M. & El-Shehawi, A.M. 2021. Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in
different rice varieties under salinity stress. PLoS ONE 16(12): e0260869. https://doi.org/10.1371/journal.pone.0260869
Shultana, R., Kee Zuan, A.T., Yusop, M.R.
& Saud, H.M. 2020. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of
saline-affected rice. PLoS ONE 15(9):
e0238537. https://doi.org/10.1371/journal.pone.0238537
Stamenkovic, S., Beskoski,
V., Karabegovic, I., Lazic,
M. & Nikolic, N. 2018. Microbial fertilizers: A comprehensive review on
current findings and future perspectives. Spanish Journal of Agricultural
Research 16: e09R01. https://doi:10.5424/sjar/2018161-2012117
Takate, B.D. & Gaykar, B.M. 2021. Effect of different concentrations of
glycerol on survival of Azotobacter chroococcum local strains isolated from wild grasses. Asian
Journal of Applied Science and Technology (AJAST) 5(4): 16-23. http://doi.org/10.38177/ajast.2021.5402
Tamer, E., Azza, G. & Mohamed, A.A.R. 2020. Developing liquid
rhizobium inoculants with enhanced long‑term survival, storage stability,
and plant growth promotion using ectoine additive. Current
Microbiology 78: 282-291. https://doi.org/10.1007/s00284-020-02265-z
Tang, A., Haruna,
A.O. & Majid, N.M.A. 2020. Potential PGPR properties of cellulolytic,
nitrogen-fixing, and phosphate-solubilizing bacteria of a rehabilitated
tropical forest soil. Microorganisms 8(3): 442. https://doi.org/10.3390/microorganisms
8030442
Tapia, M.S., Alzamora, S.M. & Chirife, J.
2020. Effects of water activity (aw) on microbial stability:
As a hurdle in food preservation. In Water Activity in Foods: Fundamentals
and Applications, edited by Barbosa-Canovas,
G.V., Fontana Jr., A.J., Schmidt, S.J. & Labuza,
T.P. Wiley. pp. 323-355. http://dx.doi.org/10.1002/9780470376454.ch10
Tikhonov, V.V., Yakushev, A.V., Zavgorodnyaya,
Y.A., Byzov, B.A. & Demin,
V.V. 2010. Effects of humic acids on the growth of
bacteria. Eurasian Soil Science 43(3): 305-313. https://doi.org/10.1134/S1064229310030087
Timmis, K. & Ramos, J.L. 2021.
The soil crisis: The need to treat as a global health problem and the pivotal
role of microbes in prophylaxis and therapy. Microbial Biotechnology 14(3):
769-797. https://doi.org/10.1111/1751-7915.13771
Vanaporn, M. & Titball, R.W. 2020. Trehalose and
bacterial virulence. Virulence 11(1): 1192-1202. https://doi.org/10.1080/21505594.2020
Vassilev, N., Eichler-Löbermann,
B., Flor-Peregrin, E., Martos,
V., Reyes, A. & Vassileva, M. 2017. Production of
a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 7: 106. https://doi.org/10.1186/s13568-017-0408-z
Zhang, J., Cook, J., Nearing,
J.T., Zhang, J., Raudonis, R., Glick, B.R., Langille, M.G.I. & Cheng, Z. 2021. Harnessing the plant
microbiome to promote the growth of agricultural crops. Microbiological
Research 245: 126690. DOI: https://doi.org/10.1016/j.micres.2020.126690
Zorb, C., Geilfus,
C.M. & Dietz, K.J. 2019. Salinity and crop yield. Plant Biology 21:
31-38. https://doi.org/10.1111/plb.12884
*Corresponding author; email: tkz@upm.edu.my
|